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REVOLUTION

This report presents a compilation of most of the zero-lift drag
results obtained from free-flight measurements made by the Langley
Pilotless Aircraft Research Division on fin-stabilized bodies of revo-
lution. The data are arranged.on standard forms, which also contain
the significant geometrical factors. Supplementary data have been pro-
vided to facilitate the determination of the body pressure drags from
the measured total bags. Summary plots and discussions have been

s included to protide a unified and broad picture of the effects of body
geometry on zero-lift drag.

The Mach number range of the tests extends frm 0.6 to approximately

2.0 and the Reynolds numbers based on body length from 2 x 106 to 100 x 106.

INTRODUCTION

At the present the, the most accurate method of obtaining the zero-
lift drag at transonic and low supersonic Mach nwnbers of an arbitrarily
shaped body of revolution is measurement by means of wind-tunnel or free-
flight tests. The importance of accurate knowledge of zero lift has been
increased by the usefulness of the “area rule” concept in the design of
complete aircraft configurations, since this concept states that the drag
of a complete aircraft configuration can be determined from its equivalent
body of revolution.

The Langley Pilotless Aircrsft Research Division has flown nearly
200 bodies of revolution of different sizes and shapes for the puqjose of
measuring their drag at zero lift. The results of many of these tests
have been published in reports dealing with the systematic variations
which they explored. However, many of these models were designed as
equivalent bodies of revolution, and their drags have been published in
the widely scattered reports dealing with the airplane configurations
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they represented. In view of the large amount of data available and of
the comparative obscurity of a large part of it, it was felt that a
collection of such data presented in a standard form would be of aid to
the aircraft and-inissile‘designers.

It is hoped that this collection will be useful in several ways.
The large number of shapes presented herein may allow the designer to
estimate easily the drag of a desired shape by a simple comparison.
Supplementary data and theoretical estimates have been provided to
facilitate the determination of the body pressure drags frmn the measured
total drags. Sumary plots and discussions have been included to provide ‘“
the user with a unified and broad picture of the effects of body geometry
on zero lift drag.
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length

maximum diameter

fineness

ratio of
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length
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ratio

body radius at any station to maximmn body radius

distance measured from apex of nose to total body

body wetted area to body frontal area (actual values
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calctilatedfrom expression — = 4Z/d Z d $ which is

Cf - OR

corzect relationship between friction coefficient Cf based —

on wetted area and friction drag coefficient CDf based on

body frontal area)

ratio of fin wetted area to body frontal area

ratio of body base area to body frontal area

body slope at x/z = 1 (slope is always negative but is
expressed as positive)

put
Reynolds number based on body length, —
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free-stream

free-stresm

free-stresm

free-stresm

density

velocity

viscosity

Mach nunber

drag coefficient based on body frontal area, _QX!%L
P@+

Pressurepressure coefficient, - Free-stream pressure

92

friction drag coefficient based on wetted area

r’ = r/R where R is maximum body radius

x! = ‘/Znose or x/lafterbo@

rb’ = ‘baseP

TESTS

Most data of this
A fin-stabilized model

report were obtained by the following procedure:
flying at or near zero lift was tracked with a

CW Doppler radar unit as it decelerated through a speed range from
supersonic Mach numbers to high subsonic Mach numbers. The resulting
velocity time history was arithmetically differentiated to give a decele-
ration time history. Shortly before or after the flight, a record of
the atmospheric properties (density, temperature, and wind velocity) was
obtained from the flight of a ratiosonde balloon. This record, together
with a space-position time record of the flight, permitted the zero-lift
drag coefficient to be calculated. The tests differ only in the method
of launching the models into free ftight and in the method of obtaining
the altitude time history.

Rocket Model Testsb

The rocket-test method is the propulsion of the models by rockets~—..
located in the model, or behind the model in the form of booster rockets

* which dropped away after burnout. In these tests the models were also
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tracked by an NACA
data of which were

u
modified SCR-584 positim radar tracking unit, the
used to obtain the space-position time records used

in the data reduction. In general, the rocket models were of a fair
size: 5 to 8 inches in diameter and up to 12 feet in length. The data

j

were obtained with the models at all altitudes up to over 50,000 feet and
Mach numbers over 4. A few carried telemetering equipment and from these
the total drag was also obtained frcm decelerometersand the base drag
from pressure cells.

Helium-Gun Tests

The second technique, the helium-gun test, was the launching of
small models (roughly 2 inches in diameter and 12 inches long) from a
helium gun. The helium gun used to launch these models was a 2&-foot
smooth-bore barrel 6 inches in dismeter attached by valves to a
100-cubic-foot tank of helium under a pressure of 200 pounds per square
inch absolute. The models were ejected at Mach numbers up to 1.4. The
space the histories of these models were calculated from the velocity- “
time data, and the data were reduced as before. A satisfactory check
of the flight-path calculation method was made by tracking several models
with the SCR-584 unit. The models were fired at an angle of 200 to the
horizontal and never rose over an altitude of 2,000 feet.

Inasmuch as
with continually
figure for their
0.2 percent, and

Accuracy

the tests have been made over a period of several years
varying techniques, It is difficult to assign a general
accuracy. The velocimeter record is accurate to within
the derived accelerations, althowh the res~t of a

short-time averaging process, are accurate-to within 1 percent except in
the region of the &rag rise where it is possible for abrupt changes to
be somewhat softened by the averaging process.

One approach to a value of accuracy is the comparison of the drag
of identical models, since all the variable factors, inaccuracies in body
0rdh3te6, VdOCity measurement, atmospheric con~tions, wind velocity,
and data reduction are included.

From the variations shown by the models of configurations8, 22, 27
to 30, 75 to 77, 106 to 109, 128, 139, and 151 reasonable limits of error
for CD and Mach number appear to be

Ac~ = tool

LIM=*O● 01

9
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Another check on the accuracy is given by a comparison of the &ita
of model log with a wind-tunnel test of an identical configuration:
MS comparison is shown in figure 1 and is quite good.

A third indication of the accuracy of the tests is given by a com-
parison of the nose pressure drags obtained frcm eight helium-gun models
with values measured in a wind tunnel and calculated by second-order
theory. The comparisons are quite close and inticate accuracy at least
to the values quoted (see the discussion on nose drags in the section
“summary Curves”).

PRESENTATION OF DATA

General Organization

With the thought in mind that the important product of these tests
is the body pressure drag, the configurations are ditided into two t~es -
“smooth” and ‘~bumpy~’- and are presented in order of increasing fineness
ratio. A smooth body is defined as one whose meridian increases without
inflection points to a maximum and stays constant or decreases without
inflection points to a minimum. All other bodies are considered to be
bumpy. Since only the nose and afterbod# contribute to the pressure drag,
the significant fineness ratio of the smooth bodies has been assumed to be
that of the sum of the nose and afterbody. Such grouping assumes that the
effects of the nose on the afterbody drag are of second order. Since such
a division cannot, in general, be made for the bumpy bodies, they are pre-
sented in the order of their total fineness ratios. This classification
by fineness ratio has the advantage of simplicity, and its usefulness is
based on the general fact that this pareneter is the most important single
factor affecting body pressure drag.

The shape of the parts of the body is the other variable and since
the assumption that the effect of shape is independent of fineness ratio
appears to be useful, the body ordinates have been nondimensionalized
and are presented in graphical form for each of the configurations. In
order to utilize this assumption strictly, the individual parts should
have been presented individually; however, this manner of presentation

% would have posed great problems for the bumpy bodl.esand was abandoned
in favor of the simpler method used. This method has the advsmtage of
enabling comparisons of bumpy and smooth bodies to be made by matching

Q

be nose is herein defined as that part of the body up to the maxi-
mum diameter and the afterbody as that part from the maximum diameter to
the base. Cylindrical sections of maxtium diameter are considered as
separate units and thus the sum of the values of Z/d of the nose and
afterbody can be less than the total value of 2/d of the body.
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their nondtiensional ordinate curves and their total fineness ratios..
Comparisons of the drag curves of such bodd.esallow estimates of the
bumpiness of a bumpy body, that is, insofar as drag is concerned.

d
The basic data are supplementedby curves of friction, base, step,

and fin drag (figs. 2 to ~). Summary curves of data from various
systematic investigationsare presented in figures 6 to 10. Some
curves showing the general effect of body shape on drag appear in
figures 11 to 15. TIE basic data arepresent.ed in figures 16 to 183
and are separated into two main groups. Figwes 16 to 120 present the
data for all the smooth bodies and the data for the bumpy bodies are
presented in figures 121 to lx. (These data were compiled from refs. 1
to 16.) A particular configurationmay be found quickly by reference to
table I where the configurationsare listed together with their distin- —
guishing geometrical properties.

Presentation of Model

Enough information appears in the

Characteristics

drawing and graphical presentation
of the ordinates to allow reconstruction of the model with reasonable
accuracy. Many of the smooth bodies had analytical meridians of parabolic
form or mixed parabolic and hemispherical form; this notation has been
made in the figure. The following equations were used for parabolic noses
and afterbodies, respectively, w

r’ = 2x’ - X’2
.

r’=l- (1 - rb’)x’2

Pertinent fineness ratios, area ratios, and angles are given to
allow quick comparisons of configurations. The type of test, rocket or
helium gun, is also noted. All dimensions given in these figures are in
inches.

Presentation of Data

Total zero-lift drag coefficientsbased on body fron~l area and
Reynolds number based on body length are presentid for each modell The
total-drag curves are curves faired through the original data points by
the present author and thus may in some cases differ slightly from
values previously published.

P
For those configurationsfor which more -

than one model were flown the individual curves are labeled a, b, and
h
&
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so forth. For the models on which base pressures were measured, the.
base pressures are also presented.

For convenience, the friction drag calculated by the method of Van
Driest (ref. 17) has been presented for each model. For cases in which
the Reynolds numbers and the data appeared such that the flow over both
the body and fins was turbulent, the points calculated were indicated by
a square symbol ❑ and comected with a dashed line. If the data

appeared to be in the range in which the fin boundary layer may have been
either laminar or turbulent, calculationswere made for both conditions,
and the points for both conditions were presented and left unconnected;

thus, the circled points (3 represent the calculation for turbulent body
flow plus laminar fin flow.

A word of warning is in order here: In the figures in which both
symbols appear at the subsonic end of the Mach number scale and only the

fully turbulent symbol ❑ appears at the supersonic value, the Reynolds
numbers are such that it is possible that transition from laminar to
turbulent flow has occurred at some Mach number between the two extremes.
This means that any pressure or wave drags derived by subtracting base,
fin, and friction drag from the total drag can be in error by the amount
of the difference between the turbulent and laminar fin friction drags.
Configuration 158 (fig. 164) presents a case in point, although for this
model the transition appears rather dramatically in the total-drag curve:.
This is unusual, and the change would not be at all apparent if the
transition had occurred in the rapidly rising section of the drag curve.

Further discussion of friction drag is presented in the “Supplementary
Data” section.

SUPPLEMENTARY DATA

This report presents a collection of total-drag curves for various
bodies of revolution stabilized by fins. The usefulness of the data is
largely determined by the information which can be obtained from these
total drags concerning the values of the pressure or wave drags of the
bodies alone (i.e., not influenced by the fins), since it is the value
of this component of the supersonic drag that is always difficult and
often impossible to calculate from theoretical considerations in me low
supersonic speed ranges considered. In order to obtain the wave drag of
the body alone frcm the test results, the friction, base, and fin pres-
sure drags must be known or assmned.

The friction drag can be calculated accurately for most bodies. For
many bodies, the base drag-is negligible and the base drag for most of .—
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the remaining bodies can be
The fin affects the drag in
induced pressures, pressure
drag on the body due to the
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estimated accurately from empirical turns. *

three ways - fin pressure drag due to fin
drag of the fin due to the body, and pressure
fins. The value-of the first component has !)

in %is report &en either measured or calctiated for most of-the fins d

used. Values of the interference terms are, in general, not calculable.
For the models of the present report, it appears reasonable to assume that
the interference terms are negligible for most cases since the fins are
extremely tbin2.

The following sections provide the data necessary in the breakdown of
the total-drag curves into their component parts.

Friction Drag

Figure 2 presents average flat-plate friction coefficientsbased on
wetted area as functions of total Reynolds number for various Mach numbers.
All values are for an insulated wall (no heat flow), which is correct for
the wooden-surface models and is nearly correct for the models with metal
surfaces and Mach nwnbers near 1. These values were used in the calcula-
tion of the friction drags shown on the data plots. The use of flat-
plate values for bodies of revolution is not exactly corrkct because of
at least two factors - first, the difference between two- and three-
Umensional flow, and, second, the existence of velocities higher than
free-stream velocity on the surface of the bodies. Both of these effects

&

are functions of body fineness ratio, the effects being most in evidence
at lower values of Z/d. Refererice18 gives an approximate correction
factor for the higher average velocities existing on bodies of revolution .

(CDj
f:body of rev . ~+ 0.5

v
which is supposedly valid at Mach numbers

as (CDf)flat plate

as high as 1. I?@h effects are apparently small for the bodies of this
report. —

%The interference has been shown to be “essentiallyzero by wind-
tunnel tests of configuration109 (see fig. 1) since the fin drag
obtained by subtracting finned ~d unfinned results agreed exactly
(except at M = 1) with fin drags o~tained o_nspecial free-flightmodels
on which the interferencedrag was zero by virtue of the cylindric@
shape of the body. Since model 109 is of high fineness ratio this
result cannot be applied generally. An attempt to measure fin inter- -
ference was made with configurations48 and 49. Although these bodies
had low-fineness-ratioafterbodies on which the fin interferencewas @

expected to be lsrge, the measured differences were small and in the
opposite sense to that expected.

*
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Another assumption has been made in the calculation of the friction
drag - namely, the bodies have been assumed to have either completely
laminar or completely turbulent flow on the body and fins. This assump-
tion may be erroneous for some of the models flying at Reynolds numbers
from 1 x 106 to 5 x 106 and shouldbe kept in mind in the sm.alysisof
such data. The only models for which this assumption is obviously wrong
are models lti and 105 (figs. 112 and 113), even though they flew at
extremely high Reynolds nmnbers. These models are both models of the
NACA RM-10 body, which has been extensively tested in wind tunnels (see
refs. 13, 19, and 20). These models are more carefully-finished than the
majority and long runs of ltinar flow (Reynolds nwnbers w to 40 x 106)
have been detected on the body on some flights. Even more likely are
long runs of laminar flow on the fins and since the fins of these models
contribute nearly as much friction-drag area as the body, this would
cause a large error in the calculations as made. With these considera-
tions, if the pressure drag of this configuration is desired it would be
best to obtain it from theory or the wind-tunnel results presented in
references 13, 19, and 2Q. Note, however, that the base drags obtained
from flight measurements should be the most accurate, since the tunnel
measurements contain sting interference effects. References 13, 19, “W
20 also give examples of the effects of Reynolds number, transition, and
heat transfer on friction drag.

Base Pressure and Base Drag

Reference 21 contains excellent analysis and data on base pressure
behind both two- and three-dimensionalbodies when the boundary layer is
turbulent ahead of the base and the Mach numbers are in the range con-
sidered in this report. The following discussion follows this reference.

Three-&l.mensionalbase dra~.- Figure 3 presents the base-pressure
drag coefficients as a function of Mach number for a cylindrical after-
body of infinite length (refs. 21 to 23). As mentioned in reference 21,
the base pressure belil.nda cylindrical base can be influenced by flow
conditions such as fin and nose pressure fields ahead of the base even
when the boundary layer is turbulent well ahead of the base. For the
bodies of the present report, such differences are believed to be small
enough that the curve shown in figure 3 may be used, the possibility of
such an error being always kept in mind, however, especially for subsonic
speeds (see ref. 18, pp. ~ to 34).

Most of the bodies reported herein have,afterbddi.es,that is, a base
diameter which is smaller than the maximum disneter. The base drag of
such bodies is discussed In reference 21; however, the method of”evalu-
ating such base pressures discussed therein is too complicated for the
p~oses of the present paperJ since the value of the base bag is seldom
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a very large percentage of the total mag for boattailed bodies. some A.
published wind-tunnel data on the base drag of conical afterbodies sug-
gest the empirical expression

()‘base
3

CD,base = cD,cylinder base ~

Care must be taken in applying this equation at subsonic Mach numbers
since it does not account for the possibility of negative base drags
which can exist (ref. 24).

Two-dimensionalbase pressures.- Fi~e 3 also presents base-
pressure coefficients for a two-dimensionalbase from references 21 and
25. The data represent the base pressures behind slab wings. They are
presented herein as an estimate of the pressures behind a rearward
facing step on a body of revolution.

Pressures on a Forward Facing Step

Figure 23 presents the pressure coefficients required to separate
the turbulent boundary layer in front of a step of several times the
boundary-layer t~c~ess. (See ref. 26.) It appears from page 52 of
reference 18 that a pressure coefficient of Cp = 0.41 is valid at sub-

sonic speeds as well as Mach 1. Again these essentially two-dimensional
values are presented as estimates for the pressures ahead of forward
facing steps on bodies of revolution.

Fin Pressure Drag

Figure 5 presents the pressure-drag coefficientsbased on the
exposed plan-form area of the fin (note this is one-half the value of
Sf/A given on model sheets) for most of the fins used in this report.

Extreme accuracy has not been striven for or obtained, since in most
cases the fin pressure drag is such a small pert of the total draR that
a ~-percent e;ror in fin &g is of

The pressure drag of fin type A

majority of the models, was measured

the or.d~rof the test accura~y.

n, which is used by the
-

by means of special helium-gun

“ii

8

.

models. The drag of fin type B
Z@ “.

was measured by special rocket Ii. .

models, the data for which are presented in reference 27. The super-
sonic pressure drag thus obtained is so similar to that measured on —

*
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.

type A that they have been shown as one curve. The pressure drag of “fin

typs c A was estimated by reducing the drag rise of a 6-percent-thick

delta wing of reference 27 (p. 47) by the square of the thickness ratios.

The pressure drag of type D A is simply the two--nsional base

pressure of figure 3 referred now to the fin

SUMMARY CURVXS

Systematic Investigations

.

plan-form area.

A majority of the smooth bodies of this report were flown in pro-
grsms designed to investigate the results of systematic geometrical
changes in the body shapes on zero-lift drag. Figures 6 to 10 present
summary plots of total-drag coefficients for the nmst important of these
investigations. These figures give a broad picture of the effect of the
most important variables on the total body drag; that is, fineness ratio
and maximum dismeter location (fig. 6), nose shape and fineness ratio
(figs. 7 to 9); (see also configurations 1 to 8) and afterbody fineness
ratio and shape (fig. 10). Various other methods of correlating the data
will be immediately apparent to the reader, but it is s~estid that the
original references be consulted before too elaborate an analysis is
attempted, since the various data have been handled in more detail in
these reports than in the present report.

Drag Analysis

The data of this report, together with data from wind-tunnel tests
and theoretical results allow,some general conclusions useful to designers
to be drawn. Some of these conclusions are presented in the following
para~aphs. The effects of nose and afterbody shape are discussed sepa-
rately, after which a brief discussion is given of the effects of the
shapes of complete bodies.

Nose &a g.- In the analysis of nose drag it is helpful to use one
of the basic premises of this report, that is, that the effects Of.shape
and fineness ratio may usefully be considered separately. The variation
at M = 1.4 of the nose pressure drag with Z/d is presented in fig.
ure EL. The lower curve represents near minimum nose pressure drags. At
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low values of Z/d, the minimum curve was

(
the flat-face value CD

)
= o.&ptota -

obtained by fairing throu@ ●

hemisphere values (ref. 28).

Above Z/d = 1.4 it’was determined from second-order calculations

(bythemethod o~V~Dyke, ref. 29) of bodies defined by r’ =x’3/4 3
&l. _x

and r’ = 4,, Note that neither of these bodies has zero slope at
11
F

its maximum diameter. Since the calculations and experiment agree well
for noses ha&mg Z/d = 3 (see fig. 12) a fair amount of confidence may
be placed in the values shown. Second-order calculations are also shown

for the parabolic nose r’ = 2x’ - X!z used on so many of the models in
this report. Taylor-McColl cone values are also shown for comparison.

Although Z/d is shown to be a powerful parameter, the effects of
shape can be important as can be seen in figure 12. The results shown
in this figure are particularly gratifying in that the values from free-
flight and wind-tunnel tests and several theories are in marked agreement.
As can be seen from this figure, there is no one minimum-drag shape for
the entire Mach number range but several do well over the entire range.
(Refs. 30 and 31 present thel~ags of many shapes not shown here.)
Note these results are for = 3 and the relative drags may change
with Z/d. Data from reference 30 have been combined with the data of
this report in part (b) of figure 12 to illustrate sane general state-
ments about the effect of nose geometry on drag. The &rags of the

xl/4 and the ellipsoid show the high peak drag level and late peak drag

Mach numbers characteristics of blunt nose bodies. The xl/4 nose
though not absolutely sharp (the cone could also have been used) shows
the early drag rise and early sharp peak drag and the rapid decrease of
drag with Mach number to be expected on sham-nose bodies of revolution.

The Von K&mdn nose which has the x3/4 profile at its apex but which
is blunter immediately behind the apex produces a drag variation with
Mach ?mmber which incorporates the desirable features of both t~es of
nose, that is, late drag rise, soft peak mid low peak drag level, and
decreasing supersonic drag. This result is perhaps not so surprising
since this nose was designed (from linearized theory) for minimum drag
for a given 2/d at low supersonic Mach numbers.

?)

.
—

.

When these results are applied to the design of a complete body, it
must be remembered that the interference drag of the nose on the a“fter-
body is also a function of nose shape. There are indications that the
lowest drag shapes whigh do not have zero slope at their maximum diameter
have higher interference drag potential than their smoother appearing
brot~rs. (See the discussion entitled “Total body drag.”)

v
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‘m Afterbody drag.- The data of figure 10 have been analyzed to give
the drags of the afterbodies caused by the pressures acting over the

.

afterbodies and bases. (For details of the drag breakdowns, see ref. 6.)
The results are presented for M = 1.2 in figure 13. The data for the

b conical afterbodies are compared with the following semiempirical
equation:

cDtit =

where

e is the slope of

, ~ - (%’~]+cdb(%~
0.0018 + o.000’71e2 (1)

n= 4 (M < 3.5)

n=3 (M > 3.5)

the afterbody in degrees (used as positive, although
actually always negative; not applicable for positive values of e) and
Cdb is the base pressure &ag of the cylinder”(fig. 3). The first term ...

of the equation approximates the second-order theoretical values calcu-
lated by Jack (ref. 32) while the second term is a purely empirical.-
approximation for the effect of base diameter ratio on the base pressure.
In view of the inaccuracies inherent in both the experimental and the
theoretical values (the theory, for instance, was cslculate. only for

M> 1.5), the n=ly exact agreement of the two shown in figure 13(a) is
almost erribarrassingand should be regsrded as somewhat fortuitous. How-

. .

ever, it is apparent, from the conrpsxisonsof this report with the second-
order theory of reference 32 and from the comparisons of reference 6 with
other theoretical calculations,that afterbody drags can be calculated
reasonably accurately for afterbodies having =imum slopes of less than
about 17°. At or above this degree of convergence large discrepsmcies ~
may be expected (see ref~ 6), theoretical calculations tending to over-
estimate the &ag.

All the test results of both parabolic smd conical afterbodies and
the theoretical calculations lead to an extremely simple rule for
selecting mintium drag afterbodies if a required value of Z/d is given.
The center line in figure 13(b) represent conical afterbodies with a
slope of 4.5° (or parabolic meridians with a base slbpe of 90). The
data points represent the parabolic afterbodies of figure 10; note also
that the tangent to the parabolic base angle is always exactly twice that

.* of the
line.

inscribed conical body. The minimum drag bodies all fall on this ~
The fact that for a given value of Z/d the required ratio of

●

●
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base diemeter to maximum dismeter is much less important at the higher
values of Z/d can be noted in fQure 13(a), and is shown more graph-
ically by the shaded area on the lower figure which shows the limits
of configurationswhose &rsgs lie within about 10 percent of the minhnum.
The range of optimum conical angles indicated (3.5° to 6.50) is of the
same order (5° to 7°) as that used for some time by ballisticians for
the drag reduction of bullets.

Total body drag.- If the minimum afterbody drags at each value of
Z/d are taken, the resulting plot (fig. 14) may be said to represent a
near minimwn possible afterbody pressure drag for M = 1.2. A similar
curve is presented for the nose drag and was obtained by fairing through
the blunt nose values from configurations1 to 7, through the minimum

Z/d = 3 nose drag (
rl=~ ‘1/2 (fig. 12)) and through the M = 1.4

values for the higher values of l/d (fig. 11). These curves are pre-
sented to give some practical boundaries~ a_tiittedlyempirical and rough,
to the minimum drag problem.

If the nose and afterbody minimum drags are added for boctl.eswith
their maximum dismeter at their midpoints, the solid curve on figure 15
is obtained. If the sane drags are added with care taken to position
the maximum diameter at the most favorable position the dashed curve
is obtained. (This position moves rapidly rearward from x/1 = o.~5
for Z/d = 7 to x/Z = 1 for Z/d = 3 for the near minimum curves of
figure 14; however, such values are extremely susceptible to small
changes in level in either of the nose or afterbody drag curves and must
only be considered as indicative of the trend.) Also, the drag rises

(~; =cDtotal - CDfriction -
cDfin pressure)

for the-smooth bodies of

this report are plotted at the fineness ratio representing the sum of
their nose and afterbody fineness ratios. Most of the bodies at low
values of Z/d actually had cylindrical center sections and thus their
interference drags were low. This must be kept in mind when the use of
either of the empirical curves as minimum drag boundaries is contemplated.
AS an instance of this, compare the pressure drags of models 84 and 85

(which are identical In shape r’ = x ,1/2), and fineness ratio of nose
and afterbody, and differ only in the cylindrical center section of
model 85. The higher ~ressure drag of model 84 must be attributed to
interference of the nose on the afterbody. This interference drag seems
high in comparism with the drag produced by the interaction of nose and
afterbodies of the psrabolic bodies of figure 6 which sxe indicated to
be of the order of model @ (and essentially zero) by a breakdown of .
their drags into.conrponentpsrts and a comparison of the pressure com-
ponents with second-ordertheoretical calculations (ref. ~). It seems
reasonable to assume that at total fineness ratios below 6, the effect
of nose induced pressures on afterbody drag and perhaps more significantly
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on base pressure (note large base diameter ratios of minimum drag after-
bodies of fineness ratios less than 3 (fig. 13(b)), and see ref. 2i for
some exsmples of such effects on base pressures} will be the important
and perhaps the determining factors affecting both the shape of the body
and the value of the drag of minimun drag designs.

.
While it is not a factor considered in the discussions of this

report it must always be remembered-that the dependence of drag on Z/d
is also a function of the friction coefficient, and that it is the
increase of friction drag with Z/d that limits the drag reduction due
to increasing z/d.

Langley Aeronautical Laboratory,
National Adtisory Committee for Aeronautics,

Lsmgley Field, Va., September 3, 1957.
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